Application of Membrane Crystallization for Minerals’ Recovery from Produced Water

نویسندگان

  • Aamer Ali
  • Cejna Anna Quist-Jensen
  • Francesca Macedonio
  • Enrico Drioli
  • Alexey Volkov
چکیده

Produced water represents the largest wastewater stream from oil and gas production. Generally, its high salinity level restricts the treatment options. Membrane crystallization (MCr) is an emerging membrane process with the capability to extract simultaneously fresh water and valuable components from various streams. In the current study, the potential of MCr for produced water treatment and salt recovery was demonstrated. The experiments were carried out in lab scale and semi-pilot scale. The effect of thermal and hydrodynamic conditions on process performance and crystal characteristics were explored. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analyses confirmed that the recovered crystals are sodium chloride with very high purity (>99.9%), also indicated by the cubic structure observed by microscopy and SEM (scanning electron microscopy) analysis. It was demonstrated experimentally that at recovery factor of 37%, 16.4 kg NaCl per cubic meter of produced water can be recovered. Anti-scaling surface morphological features of membranes were also identified. In general, the study provides a new perspective of isolation of valuable constituents from produced water that, otherwise, is considered as a nuisance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progress of Membrane Engineering for Water Treatment

Together with the supply of energy and the environmental protection, fresh water is one of the three keys elements for the sustainable development of every society. Where the availability of water cannot be carried out by using conventional sources, unavoidable appears the resort of the major water source: the sea. Today, RO is one the most used membrane processes for the production of fresh wa...

متن کامل

Carbon Dioxide Recovery by Membrane Assisted Crystallization

This study addresses the effect of impurities on the crystallization of Na2CO3 produced within a strategy for capturing CO2 from flue gases by alkaline absorption. A novel technology membrane assisted crystallization is proposed for Na2CO3 crystallization from mother liquors containing impurities. High purity of Na2CO3•10H2O crystals was obtained without impacting the performance of the mass tr...

متن کامل

Integrated Membrane Desalination Systems with Membrane Crystallization Units for Resource Recovery: A New Approach for Mining from the Sea

The mining industry is facing problems of clean production in terms of mineral processing, pollution, water consumption, and renewable energy. An interesting outlook can be to combine the mining industry with membrane-based desalination in the logic of mining from the sea. In fact, several of the drawbacks found in both mining and desalination can be minimized or overcome, which includes hinder...

متن کامل

Membrane Condenser for Particulate Abatement from Waste-Gaseous Streams

Membrane Condenser (MC) is a novel membrane contactor operation recently investigated for the valorization of industrial waste gaseous streams. In particular, until now, it was applied for water recovery from flue gas, cooling tower plumes, etc. More recently, its effectiveness and flexibility in contaminants (such as, NH3 , HF, SO2 ) removal and control from waste gaseous streams was also prov...

متن کامل

A Study on Neodymium Recovery from Aqueous Solutions for Designing a New Generation of Sandwich Liquid Membrane

Liquid Membrane (LM) based processes, as Supported Liquid Membranes (SLMs), have been proposed, for over 30 years, as effective methods for the selective separation of inorganic/organic species from different water streams. The industrial use of SLMs has been limited mainly by their insufcient stability. To investigate on the main cause of system destabilization and the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015